2006年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2006

学科試験 問題

EXAMINATION QUESTIONS

(学部留学生)

UNDERGRADUATE STUDENTS

数 学(B)

MATHEMATICS (B)

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS **60 MINUTES.**

MATHEMATICS (B)

Nationality	No.
	(Please print full name, underlining family name)
Name	

- 1 Fill in the blanks with the correct numbers.
- (1) The solution of the inequality |2x-1| < x+2 is

(2) The x-axis is tangent to the graph of the function $y = x^2 + ax + 1$

if and only if $a = \boxed{1}$ or $\boxed{2}$

- (3) The minimum of the function $f(x) = (\log_2 x)^2 + \log_4 x + 1$ is
- (4) The three points (1, 2, 4), (2, 5, 6), and (1), 2, 10) are on the same line.
- $(5) \quad \int_0^{\frac{\pi}{2}} x \sin x dx = \boxed{$

Pour points A, B, C and D lie on a circle in that order. The radius of this circle is 1 and the center is O. Suppose the line AD is a diameter of this circle and the ratio of the areas of the triangles is

$$\triangle OAB : \triangle OBC : \triangle OCD = 1 : 2 : 2.$$

(1) Let $\alpha = \angle AOB$ and $\beta = \angle BOC$. Find $\sin \alpha$: $\sin \beta$.

(2) Find the area of the rectangle ABCD.

- 3 Let p be a positive number. Let C be the curve $y = 2x^3$ and $P(p, 2p^3)$ a point on C. Let l_1 be the tangent line at P and l_2 be another tangent line of C which passes through P.
 - (1) Express the slope of l_2 in terms of p.

(2) Find $\tan \theta$, where θ is the angle formed by l_1 and l_2 and $0 < \theta < \frac{\pi}{2}$.

(3) Find the maximum value of tan θ .