2006年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2006

学科試験 問題

EXAMINATION QUESTIONS

(専修留学生)

SPECIAL TRAINING COLLEGE STUDENTS

数 学

MATHEMATICS

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

MATHEMATICS

Nationality

No.

(Please print full name, underlining family name)

Marks

Marks

1 Fill in the following blanks with the correct answers.

$$(1) \sqrt{5 - 2\sqrt{6}} - \frac{1}{\sqrt{2} + \sqrt{3}} = \boxed{ }$$

(2)
$$(-2x^2y^3)^2 \div (-xy^2)^3 =$$

(3) The solution of an exponential equation,
$$4^x - 2^{x+1} - 15 = 0$$
, is

(4) The largest solution of a triangle equation,

$$2\cos^2 x + 3\sin x - 3 = 0.(0^\circ \le x \le 180^\circ)$$
, is

(5) If a sequence, $a_1 = 1$, $a_2 = 2$, $a_3 = 5$, $a_4 = 10$, $a_5 = 17$, ..., then $a_8 = \boxed{}$.

(6) Let
$$f(x) = x^2 - 2x - 3$$
 and $g(x) = x^2 + ax + b$.

(i) The graph of y = f(x) shows a parabola whose vertex is

(ii) When
$$f(x) = 0$$
, $x = \boxed{\bigcirc}$ or $\boxed{\bigcirc}$

(iii) When a= ① and b= ② , then the graph

shown by shifting the graph of y = f(x) by +1 on the X axis and by +2 on the Y axis, agrees with the graph of y = g(x).

- (iv) When $a = \boxed{1}$ and
 - and b = 2 , the

, the ranges of x,

which satisfy the two inequalities, f(x) < 0 and g(x) > 0, at the same time, are -1 < x < 1 and 2 < x < 3.

- (v) Differential coefficient $f'(3) = \boxed{1}$, and definite integral $\int_0^3 f(x) dx = \boxed{2}$.
- 2 On the plane xy, as shown in the Figure, the equation of line AB is y = 3x + 4, line AC is perpendicular to line AB and \angle ABC = α . Fill in the following blanks with correct answers.

- (2) $\sin \alpha =$
- (3) The x-coordinate of point C is
- (4) The equation of line AC is $y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- (5) If point M is the middle point of segment BC, then

vector
$$\overrightarrow{AM} = \boxed{1}$$
 $\overrightarrow{AB} + \boxed{2}$ \overrightarrow{AC} ,

and the scalar product of two vectors $\overrightarrow{MA} \cdot \overrightarrow{AC} = \boxed{3}$

3 Twelve graphs of $y = ax^2 + bx + c$, $\bigcirc \sim \bigcirc$ are shown below.

Six conditions for a, b, c and b^2-4ac are listed in the table.

Choose the correct graph from $1 \sim 2$ to satisfy each condition and fill in the each blank with the number.

	а	b	С	b^2-4ac	Graph
(1)	0	_	+	+	
(2)		0			
(3)	· +	+	0	+	
(4)	_	+	—	0	
(5)		+	—	+	
(6)	+		+	_	

