2006年度日本政府(文部科学省)奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2006

学科試験 問題

EXAMINATION QUESTIONS

(学部留学生)

UNDERGRADUATE STUDENTS

化 学

CHEMISTRY

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

CHEMISTRY

Nationality

(Please print full name, underlining family name)

Name

	(2006)
Marks	

I Write the reference number of the correct answer in the answer box. (Atomic weights; H=1.0, C=12.0, O=16.0, and Na=23.0)

- (1) The atom ¹³C has
 - 1) 7 electrons
- 2) 13 electrons
- 3) 7 protons

- 4) 13 protons
- 5) 7 neutrons
- 6) 13 neutrons

(2) Which is the acid salt of which the aqueous solution is basic?

- 1) NaHSO₄
- 2) Na₂SO₄
- 3) NaHCO₃

- 4) Na₂CO₃
- 5) Mg(OH)₂
- 6) MgCl(OH)

(3) Arrange the ions H⁺, OH⁻, and Na⁺ in order of decreasing molar concentration in the solution that results when 200ml of 0.1mol/l sodium hydroxide solution is mixed with 100ml of 0.1mol/l hydrochloric acid.

- 1) $H^+>OH^->Na^+$
- 2) H⁺>Na⁺>OH⁻
- 3) OH->H+>Na+

- 4) OH->Na+>H+
- 5) $Na^+>H^+>OH^-$
- 6) Na⁺>OH⁻>H⁺

(4) In the solid state the combination of molecular crystals is

- 1) sodium chloride, carbon dioxide
- 2) carbon dioxide, diamond
- 3) diamond, naphthalene
- 4) sodium chloride, diamond
- 5) carbon dioxide, naphthalene
- 6) sodium chloride, naphthalene

(5)	nere is an ac reagent to preci	_		_			ne most suitable	
	1) aqueous ammonia				2) aqueous hydrogen sulfide			
	5) aqueous s) aqueous sodium hydroxide		*	4) hydrochloric acid			
	5) IIIII acio	L						
(6)	Give the name	of the	e gas formed b	y addin	ng dilute sulfuri	ic ac	cid to iron sulfide	
	FeS and heating	•						
	1) hydrogen			2) hydrogen su	lfide	2	
	3) sulfur dioxide			4	4) sulfur trioxide			
(7)	A sample of p	oure r	ubidium metal	weighi	ing 3.000g wa	s qu	uantitatively con-	
	verted to 3, 280;	g of p	ure rubidium (oxide R	lb₂O. What is t	he	atomic weight of	
:	rubidium?							
	1) 85.7		2) 93.7	7	3)	171	L	
	4) 187		5) 343		6)	375	5	
(8) The solubility of sodium carbonate in 100g water is 25.0g at 22°C. How								
	many grams of	the hy	drate Na ₂ CO ₃ •:	10H₂O c	can be dissolve	d in	100g of water at	
	22℃?							
	1) 0.556g		2) 0.76	62g	3)	9. 2	27g	
	4) 67.5g		5) 81.7	7g	6)	117	7g	
1								
(1)	,	(2)		(3)		(4)		
(5)		(6)		(7)		(8)		
İ								

I Answer the following questions (1) and (2).

(1) Balance the following reactions. Put the figures into the boxes (a) to (d).

$$MnO_4^- + (a)H^+ + (b)e^- \rightarrow Mn^{2+} + (c)H_2O$$

 $H_2C_2O_4 \rightarrow 2CO_2 + (d)H^+ + (d)e^-$

(2) A 0.320g sample of calcium oxalate CaC₂O₄ was dissolved in dilute sulfuric acid. Titration of the liberated H₂C₂O₄ required 20.0ml of a KMnO₄ solution. What is the concentration of the KMnO₄ solution? (Atomic weights; H=1.0, C =12.0, O=16.0, K=39.1, Ca=40.0, and Mn=54.9)

	a	Ъ	c	d		
(1)					(2)	mol/l
			;			

- III Answer the following questions (1) and (2).
 - (1) Calculate the heat Q (kJ) in the thermochemical reaction (A) using the equations ① to ③.

reaction (A);
$$N_2(g) + 3H_2(g) = 2NH_3(g) + Q kJ$$

①
$$2H_2(g) + O_2(g) = 2H_2O(l) + 572 \text{ kJ}$$

②
$$4NH_3(g) + 3O_2(g) = 2N_2(g) + 6H_2O(g) + 1268 \text{ kJ}$$

$$\textcircled{3}$$
 $H_2O(1) = H_2O(g) - 44 \text{ kJ}$

- (2) If a mixture of the three components in the reaction; $N_2(g) + 3H_2(g) \implies 2NH_3(g)$ were in equilibrium, what would be the effect on the amount of NH_3 if (a) the temperatures were raised, keeping the pressure constant; (b) the mixture were compressed, keeping the temperature constant? Write the reference number of the correct answer in the answer box.
 - 1) increase
- 2) decrease
- 3) no change

		(a)	(b)
(1)	(2)		

TXT A				1- · · f- · · ·	l. C.H. O		
	W Answer the following questions concerning the molecular formula C₄H₁₀O.						
(1) How	many constitution	onal isomers (structu	ıral isom	ers) have	the molecular for-		
mula (C ₄ H ₁₀ O?						
(2) How	many alcohols h	ave the molecular fo	ormula C	₄H₁₀O?			
(3) How	many ethers hav	ve the molecular for	mula C₄I	1 ₁₀ O?			
(4) How	many alcohols a	re active in the iodo	form rea	ction?			
(5) How	v many alcohols de	o not react with K ₂ C	Cr_2O_7 ?				
(1)	(2)	(3)		(4)	(5)		
answe	er cannot be used	riate reagent to dist twice.	tinguish	each com	pound. The same		
	(1) alcohols, ethers						
	hydes, ketones						
(3) carl	poxylic acids, ester	rs					
a.	glucose	b. sodium hy	drogenc	arbonate	c. acetylene		
d .	sodium	e. ethylene			f , sulfuric acid		
g .	Fehling's solution	h. methane			i . ethanol		
,	(1)	(2)			(3)		
	- 1-	-					

 \overline{V} Outlined here are synthetic processes of organic compounds. Select the structural formulas for the compounds A to I from (1)—(15).

(11) OH (12) OCH₃ (13)
$$CH = CH_2$$
 (14) OOH (15) $H_3C - C - CH_3$ $H_3C - C - CH_3$