2007年度日本政府(文部科学省)奨学金留学生選考試験 QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2007

学科試験 問題

EXAMINATION QUESTIONS

(高等専門学校留学生)

COLLEGE OF TECHNOLOGY STUDENTS

化 学

CHEMISTRY

注意 ☆試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

CHEMISTRY

Nationality	No.
Name	(Please print full name, underlining family name)

	(2007
Marks	

If necessary, use the following data to answer the questions below.

Atomic weight: H=1.0, C=12.0, N=14.0, O=16.0, Na=23.0, Al=27.0, S=32.1, Cl=35.5

Quantity of electricity: $1.00F = 9.65 \times 10^4 \text{ C}$

Molar volume of gas at the standard state: $22.4 \,\ell/\text{mol}$

- 1 Answer the following questions. Write the number of the correct answer in each answer box.
- (A) Which is the chemical species where the oxidation number of the underlined element is the same as that of chlorine in NaClO₂?
 - ① NH₃
- ② Al₂O₃
- ③ FeO
- 4 K<u>Mn</u>O₄
- ⑤ <u>N</u>O₃⁻

(B) Which of the following, aliphatic, chain-like hydrocarbons has a double bond in itself?

- ① C₄H₁₀
- ② C₂H₂
- 3 C₃H₄
- (4) C₂H₆
- ⑤ C₃H₆

(C)	Which is the correct comb action?	ination of th	e coefficients a~	e for the following re-
	a Cr^{3+} + b OH^- + c H_2	O₂ → d CrO	₄ ²⁻ + e H ₂ O	
	① a=1, b=8, c=2, d=3, e=5		② a=3, b=8, c=	2, d=4, e=5
	③ a=5, b=6, c=3, d=2, e=10	0	④ a=2, b=10, c	=3, d=2, e=8
	⑤ a=3, b=7, c=2, d=5, e=4		⑥ a=9, b=8, c=	10, d=3, e=5
(D)	Which is the gas with dens	sity of 1.63g/	ℓ in the standar	d state?
	① Cl ₂ ② H ₂ S	③ NH₃	④ CO ₂	⑤ HCl
(E)	A cell is covered with a seplode, when blood is diluted plosion?			
	① Boiling point elevation		② Osmotic pr	essure
	③ Freezing point depress⑤ Coagulation	sion		sure depression
(F)	What is the degree of polyweight 1.50×10 ⁵ ?	lymerization	for the polyeth	ylene with molecular
	① 3.45×10^2	② 8.28×10	3	2.47×10^{3}
	(4) 5.36 × 10 ³	5 1.39×10	1	

2 Evaluate the heat of reaction of the following reaction from the heat of formation data of each material. Write the number of the correct answer in the answer box.

$$CH_3CHO(\ell) = CH_4(g) + CO(g)$$

Here, ℓ is liquid, and g is gas. The data of heat of formation for each material are as follows.

 $CH_3CHO(\ell)$:

192.0 kJ/mol

 $CH_4(g)$:

74.9 kJ/mol

CO(g):

110.5 kJ/mol

- \bigcirc -2.6 kJ/mol
- \bigcirc -4.6 kJ/mol
- 3 5.6 kJ/mol

- 4 -6.6 kJ/mol
- ⑤ −8.6 kJ/mol

3 The procedure shown in the flow chart below is well known in the technical production of aluminum. Answer the following questions concerning this procedure. Write the number of the correct answer in each answer box.

(A)	Before the molten salt electrolysis, alumina is dissolved into previously
	fused cryolite, Na ₃ AlF ₆ . The molten mixture is then electrolyzed. What will
	the cryolite do for the electrolysis mainly? Choose the proper description
	from among the following.
	① raise the yield of aluminum.
	② bring the melting point of the mixture down.
	③ raise the purity of aluminum deposited.
	④ remove the impurities present in the molten mixture.
	(5) prevent the oxidation of aluminum obtained.
(B)	What is the quantity of electricity needed in order to obtain 20.0g of aluminum?
	① 1.75F ② 2.04F ③ 2.22F ④ 2.63F ⑤ 2.85F
(C)	How much energy is needed to obtain 20.0g of aluminum, when this molten mixture is electrolyzed with 5.00V as a bath voltage?
	① $2.53 \times 10^6 \text{ J}$ ② $2.16 \times 10^6 \text{ J}$ ③ $1.76 \times 10^6 \text{ J}$
	(4) $1.44 \times 10^6 \text{ J}$ (5) $1.07 \times 10^6 \text{ J}$

(D)	Th	rough the Σ	K-ray	investi	igati	ion c	of the alu	ıminun	n t	thus o	obtain	ed, it	has beer
		nd that its											
	10-1	nm. What o	an b	e estim	ate	d as	the ator	nic rad	ius	s of a	lumin	um, gi	iven that
	$\sqrt{2}$	=1.41?											
	(1)	1.95 × 10-1.			(A) 1	40.	. 10-1					1	
	_	1.25 × 10 ⁻¹ nm			_		(10 ⁻¹ nm			(3) 1	.76×]	l0⁻¹nm	
	4)	1.93×10⁻¹nm	l	((5) 2	.06×	10 ⁻¹ nm			-			
4 T	he c	lensity of th	മാ	11100116 6	solut	ion	in which	. 12 O.c.	οf	andir	ım hı	rdwari'	do io dio
		d in 87.0g o											
		the numbe										ving q	uestions.
* 1	riic	the numbe	ı oı	ine com	ECI	ansv	wei iii ea	icii alis	w	er boz	X.		
(A)	Cale	culate the m	iole i	fraction	of t	he v	vater.						
	1	0.063	2	0.937		3	0.036	4	(0.964		⑤ 0	.056
<i>(</i> – <i>)</i>													
(B)	Calo	culate the co	once	ntration	of t	the s	odium h	ydroxi	de	solut	ion.		
	1	1.17 mol∕ℓ		(2	2.78	mol∕ℓ			3	3.71 m	nol/ℓ	
	4	4.67 mol∕ℓ		(5	5.89	mol∕ℓ						

5 A sodium hydroxide aq. soln. was electrolyzed with a current of	0.500A using
carbon rod electrodes. Answer the following questions concern	ing this elec-
trolysis. Write the number of the correct answer in each answer b	OOX.
(A) What kind of gas arose from the cathode?	
① N_2 ② O_2 ③ H_2 ④ Cl_2 ⑤ CO_2	
(B) What was the time for the electrolysis when $56.0m\ell$ (standard	state) of gas
arose from the cathode?	
	_
① 695 sec ② 965 sec ③ 895 sec ④ 1056 sec	5) 1156 sec
C 200 (N (H ' 1 '	C
6 2.00 mole of N ₂ and 5.00 mole of H ₂ were mixed in the presence	
catalyst and maintained at a certain temperature. The following	_
curred in the gas mixture and then arrived at equilibrium wh	ere the total
pressure was 1.01×10 ⁶ Pa. The mole fraction of NH₃ formed was found to	be 2.50×10^{-1} .
$N_2 + 3H_2 = 2NH_3 + 92 \text{ kJ}$	
Answer the following questions concerning this reversible reactions	on. Write the
number of the correct answer in each answer box.	
(A) How much heat was evolved through this reaction?	
① 29.7 kJ ② 37.8 kJ ③ 42.9 kJ ④ 51.6 kJ	⑤ 64.4 kJ

(B) What was the partial pressure of N2 at equilibrium?

1	7.23×10^{4}	Pa

2	$9.18 \times$	10^4	Pa
---	---------------	--------	----

③ 1.86×10⁵ Pa

4 2.34×	(10^{5})	Pa
---------	------------	----

⑤ 5.23×10⁵ Pa

The Enkephalin (one of the pentapeptides), well known as one kind of opioid peptide, was hydrolyzed by protease into four kinds of α-amino acids. An α-amino acid whose molecular weight is the smallest among them was well isolated and subjected to elementary analysis, so that the content for each constituent was found as follows; carbon, 32.0%; hydrogen, 6.67%; oxygen, 42.7%; nitrogen, 18.7%. Answer the following questions concerning this amino acid. Write the number of the correct answer in each answer box.

(A) What is the structural formula for this amino acid?

$$H_2N$$
—C—COOH

 CH_2

4

ÒΗ

(B) What is the name of this amino acid?

- ① alanine
- 2 tyrosine
- 3 glycine
- 4 cysteine
- (5) phenylalanine

8 An ester was synthesized by the reaction of the primary alcohol with acetic acid. After synthesizing, the molecular weight of the ester was 1.7times that of the original alcohol. Which alcohol was used? Write the number of the correct

① CH₃OH

answer in the answer box.

- ② C₂H₅OH
- $3 C_3H_7OH$
- ④ C₄H₀OH
- ⑤ C₅H₁₁OH